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We consider a continuous coagulation-fragmentation equation, which describes
the concentration c(t, x) of particles of mass x ¥ [0, .) at the instant t \ 0 in a
model where fragmentation and coalescence phenomena occur. We associate
with this equation a nonlinear pure jump stochastic process, which is a stochas-
tic microscopic description of the phenomenon. Existence is shown in a new
case, where the total rate of fragmentation is infinite, and where we allow the
presence of particles of mass 0. When coalescence is weaker than fragmentation,
we study the appearance of particles of mass 0. We also show how to build
solutions in the converse case where all particles at initial time have a mass 0.
We finally study how the appearance of small particles leads to some regular-
ization properties.

KEY WORDS: Coagulation-fragmentation equations; nonlinear stochastic dif-
ferential equations.

1. INTRODUCTION

The coagulation-fragmentation equation deals with infinite particles
system. In the model we consider, the particles are entirely determined by
their mass. The main mechanisms taken into account are the coalescence of
two clusters to form a larger one, and the breakage of clusters into two
smaller ones. The notation c(t, x) refers to the concentration of particles
of mass x ¥ [0, .) at the instant t \ 0. This concentration c satisfies the
continuous coagulation-fragmentation equation if :



˛
“

“t
c(t, x)=

1
2

F
x

0
K(y, x − y) c(t, y) c(t, x − y) dy

− c(t, x) F
.

0
K(x, y) c(t, y) dy

−
1
2

c(t, x) F
x

0
F(y, x − y) dy

+F
.

x
F(x, y − x) c(t, y) dy,

c(0, x)=c0(x).

(1.1)

The coagulation kernel K is a symmetric function from [0, .)2 into R+.
K(x, y) represents the rate of coalescence between particles of mass x and
particles of mass y. The fragmentation kernel F is also a symmetric func-
tion from [0, .[2 into R+, and F(x, y) is the rate of fragmentation of par-
ticles of mass x+y into particles of mass x, y.

Coagulation and fragmentation phenomena are plainly shown through
equation (1.1) is quite natural. The first term of the right hand side member
describes the appearance of particles of mass x by coalescence between
particles of mass y and x − y. This phenomenon has a rate proportional to
K(y, x − y), but also to the concentrations c(t, y) and c(t, x − y). The
factor 1/2 avoids to count twice each pair y, x − y. The second term shows
the disappearance of particles of mass x by coalescence of particles of mass
x with any other particles.

The third term describes the disappearance of particles of mass x by
breakage of particles of mass x into smaller particles of masses y and x − y:
this phenomenon has a rate proportional to F(y, x − y) and to the concen-
tration c(t, x). Finally, the last term explains the appearance of particles of
mass x by fragmentation of larger particles.

We shall build a pure jump R+-valued Markov process X=(Xt)t \ 0

whose law is solution, in some sense, to (1.1). This process will represent
the evolution of the mass of a typical particle. Thus, the process (Xt)t \ 0 is
a stochastic microscopic description of the phenomenon described by the
macroscopic equation (1.1). Our aim is to derive some properties of the
solution to (1.1) from this stochastic process, by using probabilistic methods.

Laurençot (14) has results of existence of solutions to Eq. (1.1). He
shows the existence of a possibly non conservative solution to (1.1), assum-
ing mainly that F is continuous on [0, .)2, that K(x, y) [ r(x) r(y) for
some continuous function r on [0, .), a condition meaning that the
fragmentation is weaker than the coagulation, and the condition that
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>.

0 (1+x) c0(x) dx < .. Laurençot’s assumptions are not designed for
small particles.

We should mention Norris, (15) who obtains an existence result in the
pure coagulation case F=0: he allows K(x, y) to explode near 0, under an
assumption meaning that the initial distribution is not too concentrated
near 0. To be more precise, he makes the assumption that there exists
a sub-linear function j on ]0, .[ such that K(x, y) [ j(x) j(y) and
>.

0 j2(x) c0(x) dx < ..
Bertoin (2, 3) deals with pure fragmentation phenomena. The stochastic

process he works on is a model for the evolution of all particles (while our
process describes the evolution of one typical particle). He also allows
multiple fragmentations and ‘‘erosion.’’ Restricted to our context, Bertoin
assumes that there is no coalescence K=0, and that fragmentation is of the
form F(y, x − y) dy=xab(y/x) dy, where b is a function on [0, 1], sym-
metric at 1/2, and satisfying >1

0 h(1 − h) b(h) dh < .. This is a particular
case, but it allows the fragmentation kernel F(y, x − y) to be non inte-
grable: >x

0 F(y, x − y) dy=.. Bertoin has noted the appearance of par-
ticles of mass 0. In the same framework, Haas (11) gives sufficient conditions
for appearence and non-appearence of particles of mass 0. She also studies
the time asymptotic behaviours of the concentration of particles of mass 0.

We finally mention Deaconu et al. (7) who introduced, in a pure
coagulation case, a nonlinear stochastic process associated with Eq. (1.1).

Our paper is not relevent for large particles. It rather tries to extend
Laurençot’s existence results to the case where the fragmentation kernel
F(y, x − y) explodes at y=0 for each x. Hence, our assumptions are
designed to avoid gelation, i.e., the total mass will be preserved: for all
t \ 0,

F
.

0
xc(t, x) dx=F

.

0
xc0(x) dx,

and we may assume without loss of generality that >.

0 xc0(x) dx=1. Thus
Qt(dx)=xc(t, x) dx is a probability measure on [0, .) for each t. Rewrit-
ing Eq. (1.1) in terms of Qt gives the following weak formulation: for any
real function f sufficiently regular on [0, .), for every t \ 0,

OQt, fP=OQ0, fP+F
t

0
ds F

.

0
Qs(dx) F

.

0
Qs(dy)[f(x+y) − f(x)]

K(x, y)
y

+F
t

0
ds F

.

0
Qs(dx) F

x

0
dy[f(x − y) − f(x)]

x − y
x

F(y, x − y).
(1.2)
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We refer to ref. 7 (Definition 2.2) for more details on this (in the pure
coagulation case). We should mention that Norris (when F=0) (15) and
Haas (when K=0) (11) also consider a ‘‘measure’’ equation describing the
evolution of mt(dx)=c(t, x) dx.

Equation (1.2) allows singular initial conditions. Note also that if
F=0, and if Q0 has its support in Ng, this equation is equivalent to the
well-known discrete Smoluchowski coagulation equations. However, this
equation does not contain the discrete coagulation-fragmentation equation,
since the fragmentation is ‘‘continuous.’’ Anyway, Jourdain (13) studied in
detail the discrete case.

We would like to extend the probabilistic approach of ref. 7 in order
to study the following points.

1. We want to extend Laurençot’s existence results (14) to the case
where the rate of fragmentation can be infinite; that is when l(x)=
>x

0 F(y, x − y) dy=.. We thus consider the (smaller) quantity k(x)=
1
x >x

0 y(x − y) F(y, x − y) dy; k(x) represents the rate of ‘‘loss of mass’’ of
particles of mass x. An heuristic reasoning leads to the conclusion that even
if l(x)=., a suitable control of k should suffice to produce non trivial
solutions.

This case corresponds to phenomena where each particle has infinitely
many breakages in any finite time interval, but very few loss of mass occurs
at each breakage. This is linked with the ideas of Bertoin and Haas. (2, 11)

2. Such ‘‘infinite’’ fragmentation phenomena will lead, in some cases,
to the appearance of particles of mass 0. We would like to obtain some
conditions for this behaviour. Two natural questions are now: how does
the coagulation takes into account the ‘‘mass’’ of particles of mass 0? In the
case where coalescence is stronger than fragmentation, are there non trivial
solutions to (1.2) when all the particles are initially of mass 0 (i.e., Q0=d0).

3. Finally, in the case where >x
0 F(y, x − y) dy=. for all x > 0, does

fragmentation give rise to a regularization property? In other words, if
{Qt(dx)} is a solution to (1.2) with singular initial condition Q0(dx), is
Qt(dx) absolutely continuous with respect to the Lebesgue measure dx (or
eventually to dx+d0(dx)) as soon as t > 0?

Note that working with Qt(dx)=xc(t, x) dx (rather than mt(dx)=
c(t, x) dx) seems to be a good point of view for studying phenomena con-
cerning the presence of particles of mass 0. Indeed, we shall prove that
there is no loss of mass, but rather an infinity of particles of mass 0 which
represents a positive total mass. Rigorously, this simply means that
Qt({0}) > 0. From the other point of view, this should be written
0 × mt({0}) > 0.
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The rest of the paper is divided into three sections. In Section 2, we
introduce our assumptions, and write down the generalised coagulation-
fragmentation equation. We also introduce an associated pure jump non-
linear stochastic process, continuing the work of ref. 7, inspired by
Tanaka, (16) Graham and Méléard. (10) Section 3 is devoted to the exposition
of our main results. The proofs are finally collected in Section 4.

2. A GENERALISED EQUATION

First of all, we state our assumptions.

Assumptions (A).

1. The coagulation kernel K is a continuous symmetric map from
[0, .)2 into R+. There exists a constant C such that

K(x, y) [ C(1+x+y).

2. The fragmentation kernel F is a continuous symmetric map from
(0, .)2 into R+. It is also continuous from [0, .)2 into R+ 2 {+.}. The
following function is continuous on [0, .)

k(0)=0; k(x)=
1
x

F
x

0
y(x − y) F(y, x − y) dy (x > 0).

There exist constants p \ 1 and C such that

k(x) [ C(1+xp). (2.1)

Finally, for all e ¥ (0, 1),

lim
n Q .

sup
x ¥ [e, 1/e]

kn(x)=0, (2.2)

where

kn(x)=
1
x

F
x

0
y(x − y) F(y, x − y) 1{F(y, x − y) \ n} dy.

3. The initial distribution Q0(dx) is a probability measure on [0, .)
(Q0({0}) can be positive), and >.

0 xp+1Q0(dx) < . where p is defined in
(2.1).
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Note that k(x) represents the ‘‘rate of loss of mass’’ of particles of
mass x. Hence, the assumption k(0)=0 is meaningful. Remark also that
(2.2) is a technical condition, which does not seem very stringent.

With such assumptions, we have to consider a more general equation
than (1.2), which takes into account the particles of mass 0.

We denote by C1
b([0, .)) the set of C1 functions with a bounded

derivative. For a measure q and a function f, the notation Oq, fP stands for
>f(x) q(dx).

Definition 2.1. Assume (A). A family {Qt}t \ 0 of probability mea-
sures on [0, .) solves (CF) if the following conditions hold:

(i) for all T \ 0, sup[0, T] >.

0 xpQt(dx) < . where p is defined in (2.1);
(ii) for all f ¥ C1

b([0, .)), all t \ 0,

OQt, fP=OQ0, fP+F
t

0
ds[OQs, KQs

fP+OQs, FfP] (CF)

where for any probability measure q on [0, .), any x in [0, .),

Kqf(x)=F
.

0

f(x+y) − f(x)
y

K(x, y) 1{y > 0}q(dy)+fŒ(x) K(x, 0) q({0}),

Ff(x)=F
x

0
[f(x − y) − f(x)]

x − y
x

F(y, x − y) dy.

(2.4)

Note first that, thanks to our assumptions, limx Q 0+ Ff(x) is always 0,
and that the integrability condition (i) suffices to ensure that every expres-
sion makes sense and is finite in (CF) and (2.4). Note also that if for each
s \ 0, Qs(dx) has a density f(s, x), then c(s, x)=f(s, x)/x is a solution, in
a weak sense, to (1.1).

Following now the ideas of Tanaka, (16) Graham and Méléard, (10) about
the Boltzmann equation, see also ref. 7 for the Smoluchowski coagulation
equation, we associate with equation (CF) a nonlinear pure jump stochas-
tic process. Some notations are needed to introduce such a process.

Notation 2.2. We consider two probability spaces: (W, G, {Gt}t \ 0, P)
is an abstract space and ([0, 1], B[0, 1], da) is an auxiliary space (here,
da denotes the Lebesgue measure). In order to avoid confusions, the
expectation on [0, 1] will be denoted Ea, the laws La, the processes will be
called a-processes.

We denote by D([0, .), R+) the space of càdlàg functions from
[0, .) into R+, and we endow this space with the Skorokhod topology, see
Jacod and Shiryaev. (12)
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Definition 2.3. Assume (A). (X, X̃) is a solution to the problem
(SDE) if the following conditions are fulfilled:

(i) X={Xt(w)}t \ 0 is an adapted process whose paths belong to
D([0, .), R+), while X̃={X̃t(a)}t \ 0 is an a-process such that L(X)=
La(X̃);

(ii) for all T, E[sup[0, T] |Xt |p+1] < .;

(iii) L(X0)=Q0;

(iv) there exist two independent Poisson measures N(ds, da, du) and
M(ds, dy, du), adapted to {Gt}t \ 0, on [0, .) × [0, 1] × [0, .) and [0, .) ×
[0, .) × [0, .) with intensity measures ds da du and ds dy du, such that
the following nonlinear stochastic equation holds:

Xt=X0+F
t

0
F

1

0
F

.

0
X̃s − (a) 1{X̃s − (a) > 0}13u [

K(Xs − , X̃s − (a))

X̃s − (a)
4 N(ds, da, du)

+F
t

0
K(0, Xs − ) P(Xs − =0) ds

− F
t

0
F

.

0
F

.

0
y1{y ¥ (0, Xs − )}13u [

Xs − − y

Xs −
F(y, Xs − − y)4 M(ds, dy, du). (SDE)

Note that X can be seen as the evolution of the mass of a typical par-
ticle. Hence equation (SDE) is quite comprehensible: the Poisson integral
with N shows that sometimes, the mass of another particle (X̃s(a)) is added
to the typical particle. This is done at the rate K(Xs − , X̃s − (a))/X̃s − (a). The
Lebesgue integral explains that particles of mass 0 (which total mass equals
P(Xs − =0)) coagulate ‘‘continuously’’ on the typical particle, with the rate
K(0, Xs − ). Finally, the Poisson integral involving M shows that at some
instants, the typical particle breaks into two smaller particles; one of these
two particles is chosen proportionally to its mass: we thus subtract y to X,
for some y ¥ (0, Xs − ), at the rate F(y, Xs − − y) Xs − − y

Xs −
. We refer to ref. 7 for

more details on a closely related topic. We now make explicit the link
between (CF) and the nonlinear stochastic equation (SDE).

Remark 2.4. We assume (A) and consider a solution (X, X̃) to the
problem (SDE). For each t \ 0, we set Qt=L(Xt)=La(X̃t). Then the
family {Qt}t \ 0 is a solution to (CF) in the sense of Definition 2.1.

The proof of this remark is straightforward: it suffices to compute
E(f(Xt)) for f ¥ C1

b , by using the Itô formula for jump processes (see e.g.,
Jacod and Shiryaev, (12) p. 57). See ref. 7, Proposition 2.9 for a similar
argument.
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3. MAIN RESULTS

We begin by expose existence results for the problem (SDE) and hence
for (CF). Then we show, when the fragmentation is null or finite, that
equation (CF) is equivalent to standard discrete or continuous coagulation-
fragmentation equations. Then we study the case where X0 is a.s. 0, and we
show that the solution Xt becomes positive provided the kernel K is posi-
tive. We give an explicit example of such a phenomenon. Then we state
results about the hitting time of 0 under an hypothesis ensuring that frag-
mentation is involved sufficiently often. We finally present a result of regu-
larization due to an infinite fragmentation rate.

3.1. Existence

We first give an existence result in the standard case where F is
bounded.

Proposition 3.1. Assume (A), that F is a continuous bounded
function on [0, .)2, and that >.

0 x−1Q0(dx) < ..

1. Then there exists a solution (X, X̃) to the problem (SDE), and this
solution satisfies that for all t \ 0, P(Xt=0)=0. Hence the drift term can
be dropped in (SDE).

2. Hence there exists a solution {Qt}t \ 0 to (CF) for which
Qt({0})=0 for all t \ 0. This solution is ‘‘standard,’’ in the sense that it
satisfies Eq. (1.2), for every f ¥ C1

b .

Then we state a stability result.

Theorem 3.2. Assume (A). For each positive integer n, set Fn(x, y)
=F(x, y) N n and Qn

0=Q0([0, 1/n]) d1/n(dx)+1[1/n, .[(x) Q0(dx). Then we
know from Proposition 3.1 that for each n, there exists a solution (Xn, X̃n)
to (SDE)n, where Q0 and F have been replaced by Qn

0 and Fn in (SDE).

1. The sequence of laws Qn=L(Xn)=La(X̃n) is tight in the space
P(D([0, .), R+)).

2. Any limiting point Q is the law of a solution (X, X̃) to (SDE) (i.e.,
L(X)=La(X̃)=Q).

Hence there is existence of solutions for (SDE) and consequently for
(CF).

This result shows the existence of solutions for (SDE) and (CF), but
also that these solutions can be obtained by going to the limit in standard
equations.
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We finally present a particular case of fragmentation kernels which
allow to rewrite (SDE) in a simpler form. Bertoin (2) considers this kind of
fragmentation kernels.

Remark 3.3. Assume (A), and consider a solution (X, X̃) to (SDE).
Assume that F(y, x − y)=a(x) b(y/x) for some nonnegative function a

on [0, .[, and some nonnegative continuous function b on (0, 1), symme-
tric at 1/2. Note that if so, the function k satisfies

k(x)=x2a(x) F
1

0
h(1 − h) b(h) dh.

Then there exists an adapted Poisson measure m(ds, dh, du) on [0, .) ×
[0, 1] × [0, .) with intensity ds(1 − h) b(h) dh du such that (X, X̃) satisfies

Xt=X0+F
t

0
F

1

0
F

.

0
X̃s − (a) 1{X̃s − (a) > 0}13u [

K(Xs − , X̃s − (a))

X̃s − (a)
4 N(ds, da, du)

+F
t

0
K(0, Xs − ) P(Xs − =0) ds

− F
t

0
F

1

0
F

.

0
hXs − 1{u [ Xs − a(Xs − )} m(ds, dh, du). (3.1)

3.2. The Finite Case

The first case we deal with is almost obvious.

Proposition 3.4. Assume (A), that F=0, and that Q0(Ng)=1.
Consider a solution (X, X̃) to (SDE). Then for all t \ 0, Xt belongs a.s. to
Ng. Hence, n(k, t)=P(Xt=k)/k=Qt({k})/k is a solution to the standard
discrete Smoluchowski coagulation equations, see, e.g., ref. 7.

The second result is also intuitively clear. It shows that at the intersec-
tion of our case with Laurençot’s one, (14) we obtain the same equation.

Proposition 3.5. Assume (A), that >.

0 x−1Q0(dx) < ., that Q0(dx)
° dx, and that the fragmentation is finite, in the sense that

F
x

0
F(y, x − y) dy [ C(1+xp+1). (3.2)
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Consider a solution (X, X̃) to (SDE). Then for all t \ 0, Qt=L(Xt) ° dx.
Thus, if we denote by ft(x) its density, then c(t, x)=ft(x)/x is a solution
to equation (1.1), in a weak sense.

The two previous propositions would have been perhaps useful in the
works of Norris, (15) see also ref. 7. Indeed, both deal with ‘‘measure’’ solu-
tions. They prove in their papers that the way they build the solutions
make them be discrete or absolutely continuous. We show here that any
solution to (SDE) with X0 discrete (resp. absolutely continuous) is discrete
(resp. absolutely continuous).

3.3. Starting from Dust

We only treat the case where the fragmentation rate is finite for sim-
plicity, but such results may also hold in the infinite case with a suitable
control of k.

Proposition 3.6. Assume (A), that the whole mass is initially
concentrated at 0: Q0=d0. Assume also that K(0, 0) > 0, and that
>x

0 F(y, x − y) dy [ C(1+xp+1). Consider a solution (X, X̃) to (SDE).

1. Then for all t > 0, P(Xt=0)=0.

2. Hence, the drift term disappears in (SDE), and (X, X̃) satisfies

Xt=F
t

0
F

1

0
F

.

0
X̃s − (a) 1{X̃s − (a) > 0}13u [

K(Xs − , X̃s − (a))

X̃s − (a)
4 N(ds, da, du)

− F
t

0
F

.

0
F

.

0
y1{y ¥ (0, Xs − )}13u [

Xs − − y

Xs −
F(y, Xs − − y)4 M(ds, dy, du). (3.3)

3. If Qt=L(Xt), then {Qt}t \ 0 is a solution of (1.2) with initial con-
dition Q0=d0.

First of all, we note that the assumption K(0, 0) > 0 has a physical
meaning. Indeed, the more a particle is small, the more it moves fast, and
the more it may coalesce with others (well-known examples are K(x, y)=
(x1/3+y1/3)(x−1/3+y−1/3) or K(x, y)=(x+1)(y+1), see Aldous (1)).

We note that Eq. (3.3) clearly admits (X, X̃)=(0, 0) as a trivial solu-
tion. Thus, uniqueness does not hold for (3.3). We are not able to prove
uniqueness (in law) for (SDE), but it might hold: (X, X̃)=(0, 0) is not a
solution of (SDE).

As a third remark, note that intuitively, when F=0, the solutions
{Qt}t \ 0 to Eq. (1.2) satisfy the condition that for each t, Qt has its
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support in the closure of H={x1+ · · · +xn; n ¥ N, xi ¥ supp Q0}. This is
not the case here, since H={0}.

We finally would like to study the particular case where K=1 and
F=0. In such a case, Deaconu and Tanré (6) studied the large time behav-
iour of solutions to (1.1). They showed that any solution c(t, x) to (1.1),
properly rescaled, converges to c̄(t, x)=4

t2 e−2x/t.

Proposition 3.7. Assume that K=1, that F=0, and that Q0=d0.

1. There is uniqueness for (CF). The unique solution {Qt}t \ 0 is
given, for all t > 0, by

Qt(dx)=
4x
t2 e−2x/t dx.

2. Consider a solution (X, X̃) to (SDE). Then there exists a Poisson
measure n(ds, dx) on [0, .) × (0, .) with intensity ds 4

s2 e−2x/s dx such that
for all t,

Xt=F
t

0
F

.

0
xn(ds, dx).

In particular, there is uniqueness in law for (SDE).

Note more generally, that Eq. (3.3) arises when studying the long time
behaviour of the process X, see ref. 6.

3.4. Producing Some Dust

We first consider the pure fragmentation case.

Proposition 3.8. Assume (A), and K=0. Assume that for some
r > 0, some c ¥ (0, 1), k(x) \ rxc. Consider a solution (X, X̃) to (SDE),
and set

y0=inf{t > 0; Xt=0}.

1. Then E(y0) < .. Furthermore, for all t ¥ (0, .), Xy0+t=0 a.s.,
P(y0 < t) > 0. If we assume that P(X0 > 0) > 0, then P(y0 > t) > 0 for every
t \ 0.

2. Consider now the solution Qt=L(Xt) to (CF). This solution is
also a solution to (1.2), and Qt({0}) is positive as soon as t > 0, and is an
increasing function of t with limit 1.
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We now extend some of the previous results to the case where the
coagulation kernel is much weaker than the fragmentation for the small
particles.

Corollary 3.9. Assume (A). Assume that for some r > 0, some
c ¥ (0, 1), k(x) \ rxc, and that K(x, y) [ Cxy for some C \ 0. Consider a
solution (X, X̃) to (SDE), and set

y0=inf{t > 0; Xt=0}.

1. Then for all t ¥ (0, .), P(y0 < t) > 0. Furthermore, Xy0+t=0 on
the set where y0 < .. If we assume that P(X0 > 0) > 0, then P(y0 > t) > 0
for every t \ 0.

Note that since K(0, y)=0 for all y, the drift term in (SDE) does not
appear.

2. Consider now the solution Qt=L(Xt) to (CF). This solution is
also a solution to (1.2), and Qt({0}) is positive as soon as t > 0, and is an
increasing function of t.

The following remark shows that the condition on k is justified, in the
sense that converse results hold.

Remark 3.10. Assume (A), that P(X0=0)=0, and the hypothesis
of Remark 3.3. Consider a solution (X, X̃) to (SDE). If k(x) [ C(x+xp),
then X never reaches 0. This means that P(Xt=0)=0 for all t.

We finally study a particular case where the drift term of (SDE) con-
tributes to the dynamics, since fragmentation leads to the creation of dust,
while K(0, x) ] 0 except if x=0.

Proposition 3.11. Assume (A), that K(x, y) [ xc+yc and that
k(x) \ rxc, for some c ¥ (0, 1). Consider a solution (X, X̃) to (SDE), and
denote by Qt=L(Xt) the corresponding solution to (CF). Then if r >
4/(1 − c),

lim sup
t Q .

E 51
t

F
t

0
1{Xs > 0} ds6=lim sup

t Q .

1
t

F
t

0
Qs((0, .)) ds < 1. (3.4)

In particular, the drift term does not vanish identically in (SDE).
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Note that in such a case, the mass Xt of the ‘‘typical’’ particle may be
0 at some instant, and positive after this instant. Thus (3.4) gives more
information than the inequality E[y0] < ..

3.5. On the Regularity of Qt

We finally show that under some conditions, the solution Qt(dx) of
(CF) has a density f(t, x) with respect to the Lebesgue measure (or even-
tually to dx+d0(dx)), even if Q0 is singular. This is made possible by the
infinite fragmentation rate.

We only study a particular case, because the method we use, based on
the stochastic calculus of variations for jump processes, is quite restrictive.

Proposition 3.12. Assume (A), and that K(x, y) [ Cxy. Assume
also that the conditions of Remark 3.3 are fulfilled. Assume that b is C1 on
(0, 1), that >1

0 b(h) dh=., and that the map x W xa(x) is non-increasing
from (0, .) into itself. Consider a solution (X, X̃) to (SDE), and denote by
Qt=L(Xt)=La(X̃t) the corresponding solution to (CF).

1. Then as soon as t > 0, Qt has a density with respect to dx+d0(dx).
2. In the very particular case where x W xa(x) is bounded, and where

Q0({0})=0, Qt has a density with respect to dx, as soon as t > 0.

Note that in 1, we could not obtain absolute continuity with respect
to the Lebesgue measure, with regard to Proposition 3.8 and the equality
xa(x)=k(x)/x.

One may hope however that the assumptions are much too strong.
Indeed, it seems reasonable to conjecture that for {Qt}t \ 0 a solution to
(CF) and t > 0:

(i) Under Assumption (A), Qt has a density with respect to
dx+d0(dx) as soon as >x

0 F(y, x − y) dy=. for all x > 0. Here the regu-
larization comes from the ‘‘infinite’’ rate of ‘‘continuous’’ fragmentation.

(ii) Under Assumption (A) and >x
0 F(y, x − y) dy [ C(1+xp+1), if

Q0({0}) > 0 and K(x, y) > 0 on [0, .)2, Qt has a density with respect to
dx. Here the regularization comes from the coalescence of infinitely small
particles on X.

We are, alas, not able to obtain such results.

4. PROOFS

First of all, we omit to expose a proof of Proposition 3.1, since it
is now a rather standard result. Two schemes may be proposed: either use
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Laurençot’s solution to (CF), (14) to build a solution to (SDE), or adapt the
proof of ref. 7. Thus only the stability result is really new.

Proof of Theorem 3.2. First of all, we prove 1. It suffices to check
that {Qn}n satisfies the Aldous criterion for tightness, see Jacod and
Shiryaev, (12) p. 320. We will check the two points below, which suffices:

(i) For all T < .,

sup
n

E(sup
[0, T]

(Xn
t )p+1) [ CT. (4.1)

(ii) Denote, for T < . and d > 0, by A(T, d) the set of couples of
stopping times (S, SŒ) satisfying a.s. 0 [ S [ SŒ [ S+d [ T. Then

sup
n

sup
(S, SŒ) ¥ A(T, d)

E[|Xn
SŒ − Xn

S |] [ CTd.

An easy computation using Assumption (A) (1 and 3), the fact that
L(Xn)=La(X̃n), and that fragmentation makes X decrease, shows that

E[sup
[0, t]

(Xn
s )p+1] [ E[(X0 K (1/n))p+1]

+F
t

0
EEa

5K(Xn
s , X̃n

s )
X̃n

s

([Xn
s +X̃n

s ]p+1 − [Xn
s ]p+1])6 ds

[ Cp+Cp F
t

0
EEa[K(Xn

s , X̃n
s )(1+(Xn

s )p+(X̃n
s )p)] ds

[ Cp+Cp F
t

0
E[1+[Xn

s ]p+1] ds.

Using the Gronwall Lemma allows to conclude that (i) holds.
Consider now (S, SŒ) in A(T, d). Using (A) and (4.1), we obtain

E[|Xn
SŒ − Xn

S |] [ E 5F
S+d

S
Ea(K(Xn

s , X̃n
s )) ds6+E 5F

S+d

S
k(Xn

s ) ds6

[ CE 5F
S+d

S
Ea(1+Xn

s +X̃n
s ) ds6+CE 5F

S+d

S
[1+(Xn

s )p] ds6

[ CTE[sup
[0, T]

(1+Xn
s +[Xn

s ]p)] × d [ CT × d

and (ii) also holds.
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We now present a proof of 2. We thus consider a converging-in-law
subsequence of Xn which we still denote by Xn, going to some limiting
point X. We set Qn=L(Xn)=La(X̃n) and by Q=L(X). Denote by Qn

s

and Qs their time marginal laws at s. We will prove that Q satisfies the
martingale problem associated with (SDE), which suffices, according to
standard representation theorems for point processes. Thus what we have
to show is that

(iii) L(X0)=Q0,
(iv) for all f ¥ C1

b([0, .[), (we use the notations of Definition 2.1),
the process

Mf
t =f(Xt) − f(X0) − F

t

0
[KQs

f(Xs)+Ff(Xs)] ds

is a martingale.

First, (iii) is immediate, since L(X0) is the weak limit of L(Xn
0)=

Qn
0=Q0([0, 1/n]) d1/n(dx)+1[1/n, .[(x) Q0(dx).

Next, we check (iv). We shall show that for any 0 [ s1 < · · · < sk [

s < t, any g1,..., gk in Cb([0, .)), and any f ¥ C1
b([0, .)),

E 5D
k

i=1
gi(Xsi

) × (f(Xt) − f(Xs) − F
t

s
[KQu

f(Xu)+Ff(Xu)] du)6=0.
(4.2)

What we know is that

E 5D
k

i=1
gi(Xn

si
) × (f(Xn

t ) − f(Xn
s ) − F

t

s
[KQn

u
f(Xn

u)+Fnf(Xn
u)] du)6=0

(4.3)

where Fn is defined as F with F replaced by Fn=F N n. First of all,
the map I from D([0, .), R+) into R defined by x W <k

i=1 gi(xsi
) ×

(f(xt) − f(xs)) is continuous at any point x which has no jumps at
s1,..., sk, s, t. This is a.s. the case of X, which is quasi-left-continuous (see
Jacod and Shiryaev, (12) p. 22), since it is the limit in law of a sequence of
processes satisfying the Aldous criterion (see ref. 12, p. 320). Furthermore,
it is clear that I(x) [ C(1+sup[0, t] xu). Using the uniform integrability of
(sup[0, t] Xn

s ) obtained in (4.1), we deduce that, as n tends to infinity,

E 5D
k

i=1
gn

i (Xsi
) × (f(Xn

t ) − f(Xn
s ))6Q E 5D

k

i=1
gi(Xsi

) × (f(Xt) − f(Xs))6 .

(4.4)
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Secondly, for any q, any x, we can write Kqf(x)=>.

0 a(x, y) q(dy), where
a(x, y)=K(x, y)[f(x+y) − f(x)]/y if y > 0, and a(x, 0)=fŒ(0) K(x, 0).
Hence we see that > t

s KQn
u
f(Xn

u) du=OQn, > t
s a(Xn

u, .) duP. The map a being
continuous on [0, .)2, we deduce that the map from [D([0, .), R+)]2

into R defined by (x, y) W > t
s a(xu, yu) du is continuous, and bounded

from above by C sup[0, t] [1+xu+yu]. Using the uniform integrability of
(sup[0, t] Xn

s ) obtained in (4.1), one easily deduces that, as n tends to infinity,

E 5D
k

i=1
gi(Xn

si
) × F

t

s
KQn

u
f(Xn

u) du6Q E 5D
k

i=1
gi(Xsi

) × F
t

s
KQu

f(Xu) du6 .

(4.5)

We finally have to check that as n increases to infinity,

An=E 5D
k

i=1
gi(Xn

si
) × F

t

s
Fnf(Xn

u) du6

Q A=E 5D
k

i=1
gi(Xsi

) × F
t

s
Ff(Xu) du6 . (4.6)

We denote by Bn the same expression as An with Fn replaced by F. Then,
it is clear that |Bn − A| tends to 0, since the map x WFf(x) is continuous
(thanks to (A)-2) and bounded from above by Ck(x) [ C(1+xp), and
thanks to the uniform integrability of sup[0, t] |Xn|p. On the other hand, it is
clear that

|Bn − An | [ C F
t

s
E 5 1

Xn
u

F
Xn

u

0
y(Xn

u − y) F(y, Xn
u − y) 1{F(y, Xn

u − y) \ n} dy6 du

=C F
t

s
Dn

u du

where the last equality stands for a definition. Since for all u, Dn
u [

E[k(Xn
u)] [ CE[1+(Xn

u)p] [ CT thanks to (4.1), one may use the
Lebesgue theorem, and it remains to show that for each u, Dn

u tends to 0.
For each e > 0, we use the decomposition

Dn
u [ sup

x ¥ [e, 1/e]

1
x

F
x

0
y(x − y) F(y, x − y) 1{F(y, x − y) \ n} dy

+E[1{Xn
u < e}k(Xn

u)]+E[1{Xn
u > 1/e}k(Xn

u)].
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Thanks to (A), the first term on the right-hand side goes to 0 as n tends to
infinity, for each e > 0 fixed. The second term is smaller than sup[0, e] k(x),
which tends to 0, uniformly in n as e tends to 0, since Assumption (A)
ensures that k(0)=0 and k is continuous. Finally, the third term also
tends to 0 uniformly in n as e tends to 0, since k(x) [ C(1+xp), and from
the uniform integrability of (Xn

u)p obtained in (4.1). Hence |Bn − An | tends to 0.
Associating (4.4), (4.5), and (4.6) allows to go to the limit in (4.3) and

to establish (4.2). L

We now give the way we obtain the specific version (3.1) of (SDE) in
the case of fragmentation kernels described in Remark 3.3.

Proof of Remark 3.3. We make the ‘‘substitution’’ h=y/Xs − in the
fragmentation term of (SDE). We set

At=F
t

0
F

.

0
F

.

0
y1{y ¥ ]0, Xs − [}13u [

Xs − − y

Xs −
F(y, Xs − − y)4 M(ds, dy, du).

Then, due to the specific form of F,

At=F
t

0
F

.

0
F

.

0

y
Xs −

Xs − 13 y
Xs −

¥ ]0, 1[4 13u [ 11 −
y

Xs −
2 a(Xs − ) b 1 y

Xs −
24M(ds, dy, du).

(Ti, Yi, Ui)i \ 1 stand for the points in the support of M. In other words,
M(ds, dy, du)=;i \ 1 d(Ti, Yi, Ui)

(ds, dy, du). Consider the point measure
m(ds, dh, dv)=;i \ 1 d(Ti, h i , Vi)

(ds, dh, dv), where

hi=Yi/XTi − ; Vi=UiXTi − /[(1 − hi) b(hi)].

Then one easily checks that the compensator of m is deterministic (hence m

is Poisson) and is given by ds(1 − h) b(h) dh dv. It is furthermore straight-
forward that

At=F
t

0
F

1

0
F

.

0
hXs − 1{v [ Xs − a(Xs − )} m(ds, dh, du).

This concludes the proof. L

We now study the ‘‘finite case.’’

Proof of Proposition 3.4. Since F=0 and X0 \ 1 a.s., it is clear
that for all t, Xt > 0 a.s. Thus (X, X̃) simply satisfies the equation

Xt=X0+F
t

0
F

1

0
F

.

0
X̃s − (a) 1{X̃s − (a) > 0}13u [

K(Xs − , X̃s − (a))

X̃s − (a)
4 N(ds, da, du).
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We now show recursively on n that a.s., for all t, Xt does not belong to
]n, n+1[.

Since X̃ is a nonnegative process, it is clear that X is an non-decreas-
ing process. In particular, we deduce that for all t, Xt \ X0 \ 1 a.s. In par-
ticular, we see that a.s., Xt does not belong to ]0, 1[.

Let now n \ 1 be fixed, and assume that a.s., for all t, all 1 [ k [ n,
Xt ¨ ]k − 1, k[ (and thus X̃t ¨ ]k − 1, k[ da-a.s.). Assume that for some
t \ 0, Xt ¥ ]n, n+1[ with positive probability. Since X is a.s. nondecreasing
and starts from an integer X0 \ 1, we deduce that with positive probability,
X has jumps of size in 1 n

k=1 ]k − 1, k[. But the jumps of X are of the form
X̃u(a), and are thus a.s. never in 1 n

k=1 ]k − 1, k[. Hence, with probability
one, for all t \ 0, Xt ¨ ]n, n+1[. This concludes the induction. L

We now check that if the initial condition has a density and if the
fragmentation is finite, then the solution has a density.

Proof of Proposition 3.5. First of all, a simple computation, using
(3.2), point (ii) in the definition of (SDE) (see Definition 2.3) and the fact
that E(X−1

0 ) < . shows that for all T > 0,

E[sup
[0, T]

(Xt)−1] [ CT. (4.7)

We now consider, for all a > 0, the set

Aa=3A Borelian subset of [0, a]; F
A

dx=04 .

Our aim is to prove that for each a > 0 fixed, the function fa(t)=
supA ¥ Aa

P(Xt ¥ A) vanishes identically. This will show that for all t \ 0,
L(Xt) ° dx. Let A belong to Aa. We know that P(X0 ¥ A)=0. Then,
using the negativity of certain terms and L(X0) ° dx, we obtain

P(Xt ¥ A)=P(X0 ¥ A)+F
t

0
EEa

5(1A(Xs+X̃s) − 1A(Xs))
K(Xs, X̃s)

X̃s

6 ds

+F
t

0
E 5F

Xs

0
(1A(Xs − y) − 1A(Xs))

Xs − y
Xs

F(y, Xs − y) dy6 ds

[ F
t

0
EEa

51A(Xs+X̃s)
K(Xs, X̃s)

X̃s

6 ds

+F
t

0
E 5F

Xs

0
1A(Xs − y) F(y, Xs − y) dy6 ds.
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First note that thanks to (3.2), a.s., >Xs
0 1A(Xs − y) F(y, Xs − y) dy=0,

since A is Lebesgue-null. Thus, using (A), and denoting by Qs the common
law of Xs and X̃s,

P(Xt ¥ A) [ F
t

0
EEa

51A(Xs+X̃s) 1{Xs [ a}
11+a

X̃s

+126 ds

[ F
t

0
ds F

a

0
Qs(dy) P[Xs ¥ A − y]11+a

y
+12 .

But for each y ¥ [0, a], A − y belongs to Aa. Using furthermore (4.7), we
obtain

P(Xt ¥ A) [ CT, a F
t

0
fa(s) ds.

Taking the supremum over all A ¥ Aa in the left-hand side member, and
applying the Gronwall Lemma allow to conclude. L

We now study what happens when Q0 is a Dirac mass at 0: the system
is initially composed of a ‘‘cloud of dust.’’

Proof of Proposition 3.6. Note that points 2 and 3 are straight-
forward consequences of 1. We thus only check point 1. Denote by JF

t =
;s [ t 1DXs < 0 the number of jumps of X on [0, t] due to the fragmentation.
Then for all T < .,

E[JT]=E 5F
T

0
F

Xs

0

Xs − y
Xs

F(y, Xs − y) dy ds6

[ CTE[sup
[0, T]

(1+Xp+1
t )] < .

by the assumption on F and by condition (ii) of Definition 2.3.
Denote by Wt the event {Xt=0}. We first prove that Wt does not

increase as t increases. To this aim, let t be positive and w lie in Wc
t . Then

for all r \ t, Xr(w) > 0. Indeed, from JF
r − JF

t < . a.s., we know that the
fragmentation integral in (SDE) has finitely many jumps. We denote by
TF

1 ,..., TF
n the instants of these jumps. Between two instants of fragmenta-

tion, we know that X(w) does not decrease, while it is also clear that at
each instant TF

i of fragmentation, − DXT F
i

[ XTi − . Hence Xr(w) > 0.
We now deduce that it is not possible that for some d > 0,

P(Xd=0) > 0. Assume the converse, and consider w ¥ Wd with SF
1 (w) > 0,
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SF
1 denoting the first instant of negative jump of X. Then it is easily

deduced from equation (SDE) that for t ¥ ]0, SF
1 (w) N d[,

Xt \ F
t

0
K(0, Xs) P(Xs=0) ds \ P(Wd) K(0, 0) t > 0.

But in such a case, we have Xt(w) > 0, and thus that w ¨ Wt. Since Wt is
non increasing, we deduce that w ¨ Wd. This is a contradiction. L

We now solve explicitely (SDE) in the pure coagulation case, when
K=1 and X0=0.

Proof of Proposition 3.7. We fragment the proof in several steps.

Step 1. First, an easy computation shows that Qt(dx)=4x
t2 e−2x/t dx

satisfies (CF) in the sense of Definition 2.1.

Step 2. We now prove the uniqueness for (CF). We thus consider
two solutions {Qt}t \ 0 and {Rt}t \ 0 with Q0=R0=d0, and we introduce
the set C.

b, 1 of C. functions f on [0, .[, bounded by 1 with all their deri-
vatives. For such a f, we define af(x, y)=[f(x+y) − f(x)]/y if y > 0, and
af(x, 0)=fŒ(x). Then we have

|OQt − Rt, fP| [ F
t

0
|OQs é Qs − Rs é Rs, afP| ds

[ F
t

0
|OQs − Rs, bf, QsP|+|ORs − Qs, cf, QsP| ds,

where bf, q(y)=> q(dy) af(x, y) and cf, q(x)=> q(dy) af(x, y). One may
easily check that for any f ¥ C.

b, 1, any probability measure q ¥ P([0, .[),
the maps bf, q and cf, q also belong to C.

b, 1. We thus obtain, using the
Gronwall Lemma, that for all t \ 0, supf ¥ C.

b, 1
|OQt − Rt, fP|=0.

We deduce in particular that for all t \ 0, all t ¥ [− 1, 1], OQt(dx), e itxP
=ORt(dx), e itxP.

Furthermore, one easily checks that for all t \ 0, there exists ct > 0
such that OQt(dx)+Rt(dx), ectxP < .. Hence, for each t \ 0, the applica-
tions fQt

(z)=OQt(dx), ezxP and fRt
(z)=ORt(dx), ezxP are holomorphic on

{Re z < at}.
Since they coincide on {z=it, t ¥ [−1, 1]}, they coincide on {Re z < at}.

We deduce in particular that for all l \ 0, OQt(dx), e−lxP=ORt(dx), e−lxP.
Hence for any t \ 0, Rt and Qt have the same Laplace transform, and thus
are equal.
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Step 3. We now prove point 2. Consider a solution (X, X̃) to
(SDE). We know that {La(X̃t)}t \ 0 satisfies (CF). Hence, the two previous
steps yield that for each t > 0, La(X̃t)(dx)=4x

t2 e−2x/t dx. Making the sub-
stitution x=X̃s(a) in equation (SDE) implies (see the proof of Remark 3.3
for the rigorous arguments of such a substitution)

Xt=F
t

0
F

1

0
F

.

0
X̃s(a) 1{u [ 1/X̃s(a)}N(ds, da, du)

=F
t

0
F

.

0
F

.

0
x1{u [ 1/x}C(ds, dx, du)

where C(ds, dx, du) is a Poisson measure with intensity ds 4x
t2 e−2x/t dx du.

Then, the Poisson measure n(ds, dx)=>.

0 1u [ xC(ds, dx, du) has the inten-
sity ds 4

t2 e−2x/t dx, and

Xt=F
t

0
F

.

0
xn(ds, dx).

This concludes the proof. L

We now prove that if the fragmentation is sufficiently explosive, and if
K=0, then Xt reaches 0.

Proof of Proposition 3.8. One more time, point 2 is a direct conse-
quence of point 1. To prove point 1, we proceed in four steps.

Step 1. We first show that E[y0] < .. We compute E[X1 − c
t ],

where c is defined in the statement, and we make y0 appear. Since the map
x1 − c is not of class C1

b , we have to introduce, for each e > 0, an increasing
C1

b function z e(x) such that z e(x)=x1 − c for all x \ e.

E[z e(Xt)]=E[z e(X0)] − F
t

0
E 5 1

Xs
F

Xs

0
{z e(Xs) − z e(Xs − y)}

× (Xs − y) F(y, Xs − y) dy6 ds

[ E[z e(X0)] − F
t

0
E 51{Xs \ 2e}

1
Xs

F
Xs

e

{(Xs)1 − c − (Xs − y)1 − c}

× (Xs − y) F(y, Xs − y) dy6 ds.
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But one may prove, using the symmetry of F, that for all x > 0,

1
x

F
x

x/2
{x1 − c − (x − y)1 − c}(x − y) F(y, x − y) dy \

(1 − c)
2

k(x)
xc

.

Using the assumption on k and the fact the Xt \ 0 a.s, we obtain

E 5F
t

0
1{Xs \ 2e} ds6 [

2
r(1 − c)

E[z e(X0)].

Making e tend to 0 yields that

E 5F
t

0
1{Xs > 0} ds6 [

2
r(1 − c)

E[X1 − c
0 ].

Making t tend to infinity shows finally that

E[y0] [
2

r(1 − c)
E[X1 − c

0 ] < .. (4.8)

Step 2. The assertion Xy0+t=0 for all t \ 0 is obvious, since in the
pure fragmentation case, s W Xs does not increase a.s.

Step 3. We now prove that for any t > 0, P[y0 [ t] > 0. Assume the
converse. Then there exists t0 such that for all t [ t0, Xt > 0 a.s. We will
deduce the following points:

(i) for all e > 0, P(Xt0/2 < e) > 0,

(ii) denote by Xx
t the process conditioned by X0=x, and by yx

0 the
corresponding hitting time. There exists a sequence xn going to 0 as n tends
to infinity such that for any n, yxn

0 \ t0/2 a.s.,

(iii) E(yxn
0 ) goes to 0 when n tends to infinity.

Points (ii) and (iii) are in contradiction.
We first check (i).

P(Xt0/2 < e) \ P[Ue
t0/2 \ 1]

where

U e
t =F

t

0
F

.

0
F

.

0
1{y ¥ ]Xs − − e, Xs − [}13u [

Xs − − y

Xs −
F(y, Xs − − y)4 M(ds, dy, du).
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But a simple computation shows that the integer-valued random variable
U e

t0/2 has a positive expectation. Hence, P[Ue
t0/2 \ 1] > 0, which concludes

the proof of (i).

(ii) Note that since we consider the pure fragmentation case, Xx
t is an

homogeneous Markov process. From y0 \ t0 a.s. and the Markov property,
we deduce that P[yXt0/2

0 \ t0/2]=P[y0 \ t0]=1. Thus,

F
.

0
P[yx

0 \ t0/2] Qt0/2(dx)=1 (4.9)

where Qt0/2=L(Xt0/2). We deduce that for Qt0/2-almost all x,
P[yx

0 \ t0/2]=1. Using (i) allows to conlude.
Finally, (iii) follows from (4.8), which yields that E[yxn

0 ] [ Cx1 − c
n .

Step 4. We finally check that for any fixed t > 0, P(y0 \ t) > 0. First
of all, we consider 0 < x1 < x2 such that P(X0 ¥ [x1, x2]) > 0. Then we
consider, for a positive integer n to be chosen later,

Vn
t =F

t

0
F

.

0
F

.

n
y1{y ¥ ]0, Xs − [}13u [

Xs − − y

Xs −
F(y, Xs − − y)4 M(ds, dy, du),

Wn
t =F

t

0
F

.

0
F

n

0
1{y ¥ ]0, Xs − [}13u [

Xs − − y

Xs −
F(y, Xs − − y)4 M(ds, dy, du).

Then it is clear that for any n,

P(y0 \ t) \ P(X0 ¥ [x1, x2], Xt \ x1/2)

\ P(X0 ¥ [x1, x2], Vn
t < x1/2, Wn

t =0).

Using the fact that X a.s. does not increase, we obtain that

Wn
t [ F

t

0
F

X0

0
F

n

0
M(ds, dy, du)=Cn

t

where the equality stands for a definition. Conditionally to X0, Cn
t follows

a Poisson distribution with parameter tX0n. In particular, for any n, any
x0 ¥ [x1, x2], P(Cn

t =0 | X0=x0) \ exp(−ntx2).
On the other hand, an easy computation using the independance of the

Poisson measures M|[0, .[ × [0, .[ × [0, n[ and M|[0, .[ × [0, .[ × [n, .[, shows that for
any x0 ¥ [x1, x2],

E[Vn
t | Cn

t =0, X0=x0] [ F
t

0
E[kn(Xs) | Cn

t =0, X0=x0] ds
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where kn(x)=x−1 >x
0 y(x − y) F(y, x − y) 1{F(y, x − y) \ n} dy. Using now (A),

we have that for any 0 < e < x2, zn(e, x2)=sup[e, x2] kn(x) tends to 0 as n
tends to infinity. Furthermore, it is clear that kn [ k, and thanks to (A)
again, we know that sup[0, e] k(x) tends to 0 with e. Using finally the fact
that X is a.s. non increasing, we obtain that for any e > 0,

inf
x0 ¥ [x1, x2]

E[Vn
t | Cn

t =0, X0=x0] [ tzn(e, x2)+t sup
[0, e]

k(x). (4.10)

This clearly implies that the left-hand side of (4.10) tends to 0. Thus,

lim
n

inf
x0 ¥ [x1, x2]

P[Vn
t [ x1/2 | Cn

t =0, X0=x0]=1.

We choose finally n in such a way that

inf
x0 ¥ [x1, x2]

P[Vn
t [ x1/2 | Cn

t =0, X0=x0] > 0.

We finally obtain

P(y0 \ t) \ F
x2

x1

Q0(dx0) P[Vn
t [ x1/2 | Cn

t =0, X0=x0] P(Cn
t =0 | X0=x0)

which is a positive quantity. L

We now extend some of the previous results to the case of weak
coagulation.

Proof of Corollary 3.9. One more time, point 2 is a straightforward
consequence of point 1. To prove point 1, we use the previous proposition.
First of all denote by XF the pure fragmentation process associated with X0

and M. In other words, XF satisfies the same equation as X where K is
replaced by 0.

Consider also the first instant TK
1 of positive jump of X. Then, since

K(x, y) [ Cxy and since X decreases until TK
1 , one easily checks that a.s.,

TK
1 \ S, where

S=inf 3 t > 0; F
t

0
F

1

0
F

.

0
1{u [ CX0}N(ds, da, du) \ 14 .

Then we note that conditionally to X0, S follows an exponential distribu-
tion of parameter CX0, and is independent of XF.
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But on the event {S > t}, Xs=XF
s for all s [ t. We denote by yF

0 the
first instant where XF reaches 0. We obtain

P(y0 < t) \ P(S > t, y0 < t)

=P(S > t, yF
0 < t)

=E[P(S > t | X0) × P(yF
0 < t | X0)]

=E[e−CX0tP(yF
0 < t | X0)]

=E[e−CX0t 1{y
F
0 < t}].

This quantity is positive, since X0 < . a.s., and since P(yF
0 < t) > 0 accord-

ing to Proposition 3.8.
The same argument shows that for any t > 0, P(y0 > t) \ P(S \ t,

y0 > t) > 0. Finally, since K(0, x)=0 for all x, it is obvious that Xy0+t=0
for all t > 0 on the event {y0 < .}. L

We now check that the previous condition on k is justified.

Proof of Remark 3.10. Under these assumptions, one may use
Remark 3.3. Hence it is clear that

Xt \ X0 − F
t

0
F

1

0
F

.

0
hXs − 1{u [ Xs − a(Xs − )} m(ds, dh, du).

We deduce, using a Gronwall type formula for point measures (see the
appendix of ref. 8 for the proof of a very similar result) that

Xt \ X0 exp( − Ut)

where

Ut=F
t

0
F

1

0
F

.

0
[− ln(1 − h)] 1{u [ Xs − a(Xs − )} m(ds, dh, du).

We just have to check that Ut < . a.s. for any t. First note that by assumption,
xa(x) [ C(1+xp−1). Hence, Ut [ V(t, M), where M=sup[0, t] (C(1+Xp−1

s ))
and

V(t, x)=F
t

0
F

1

0
F

x

0
[− ln(1 − h)] m(ds, dh, du).
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It remains to prove that for all t, all x, V(t, x) < . a.s. We will show that
its Laplace transform E(e−lV(t, x)), which is explicitly computable, tends to 1
as l tends to 0+.

E(e−lV(t, x))=exp 1− F
t

0
F

1

0
F

x

0
{1 − el ln[1 − h]}(1 − h) b(h) dh2

=exp 1 − tx F
1

0
[1 − (1 − h)l](1 − h) b(h) dh2 .

Recalling that >1
0 h(1 − h) b(h) dh < ., we deduce that this quantity tends

to 1 when l goes to 0. Indeed, for any e ¥ ]0, 1[, any l ¥ ]0, 1[,

F
1

0
[1 − (1 − h)l](1 − h) b(h) dh

[ F
1 − e

0
(1 − el) h(1 − h) b(h) dh+F

1

1 − e

(1 − h) b(h) dh.

Choosing e > 0 small enough and then l small enough allows to conclude. L

We finally exhibit cases where the fragmentation makes Xt reach 0
while K(0, y) ] 0 for all y ] 0.

Proof of Proposition 3.11. This proof is quite the same as that
presented for Proposition 3.8. We introduce, for e > 0 fixed, a C1

b increas-
ing concave function z e, such that z e(x)=x1 − c for x ¥ [e, .[ and such that
(z e)Œ(x) [ (1 − c)/xc on ]0, .[. We compute

E[z e(Xt)]=E[z e(X0)]+F
t

0
E[(z e)Œ (Xs) K(Xs, 0)] P[Xs=0] ds

+F
t

0
EEa

5z e(Xs+X̃s(a)) − z e(Xs)
X̃s(a)

K(Xs, X̃s(a)) 1{X̃s(a) > 0}
6 ds

− F
t

0
E 5 1

Xs
F

Xs

0
[z e(Xs) − z e(Xs − y)](Xs − y) F(y, Xs − y) dy6 ds.

One may check that for any x \ 0, y \ 0, z e(x+y) − z e(x) [ y × (x K y)−c.
Using the upper-bound of K yields that for all x \ 0, y \ 0,
[z e(x+y) − z e(x)] K(x, y)/y [ 2. On the other hand, one clearly has
(z e)Œ(x) K(x, 0) [ 1. Using then the inequality P(Xs=0)+2P(Xs > 0) [ 2,
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the estimates of k given in the statement, and the same computations as in
the proof of Proposition 3.8, we obtain

E[z e(Xt)] [ E[z e(X0)]+2t −
(1 − c) r

2
F

t

0
E[1{Xs > 2e}] ds.

Since z e(Xt) is always nonnegative, we deduce that

F
t

0
E[1{Xs > 2e}] ds [

2
(1 − c) r

E[z e(X0)]+
4

(1 − c) r
t.

Making e tend to 0, we finally obtain

lim sup
t Q .

1
t

F
t

0
P[Xs > 0] ds [

4
(1 − c) r

.

This ends the proof. L

We finally study the regularization properties of infinite fragmenta-
tion. We copy line by line the method of ref. 9 although we can unfortuna-
tely not apply directly the results. This was inspired by the works of
Bichteler and Jacod. (4) The method below is based on stochastic calculus of
variations for jump processes, which was first investigated by Bismut. (5)

We will use the following lemma, which can be found in ref. 9.

Lemma 4.1. Let f be a map from [a, b] into R, which is strongly
increasing in the sense that there exists c > 0 such that for all a [ l [

l+n [ b, f(l+n) − f(l) \ cn. Then for all Lebesgue-null set A,

F
b

a
1A(f(l)) dl=0.

Proof of Proposition 3.12. We only sketch the proof of point 1.
Indeed, point 2 follows by combining Point 1 and Remark 3.10. We fix a
terminal time T > 0. We first consider the pure fragmentation case (K=0)
in Steps 1 to 4, and we extend the result to the case of weak coagulation in
Step 5.

Step 1. First of all, note that we may use Remark 3.3:

Xt=X0 − F
t

0
F

1

0
F

.

0
hXs − 1{u [ Xs − a(Xs − )} m(ds, dh, du)
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where m has the intensity ds(1 − h) b(h) dh du. Then we may use explicit
computation of Doléans–Dade exponentials, see Jacod and Shiryaev, (12)

p. 59, to obtain

Xt=X0 exp( − At) (4.11)

where

At=F
t

0
F

1

0
F

.

0
[− ln(1 − h)] 1{Xs − > 0}1{u [ Xs − a(Xs − )} m(ds, dh, du). (4.12)

Step 2. We now consider a C1 function c on [0, 1], positive on
]0, 1[. Then we use the Girsanov Theorem for point measures, see Jacod
and Shiryaev, (12) p. 157. We obtain that if c and its derivative are suffi-
ciently small (integrability conditions are required), if for all l ¥ [0, 1],
the map h W h − lc(h) is a bijection from [0, 1] into itself, then for all
l ¥ ]0, 1[, the law of {Xt}t ¥ [0, T] is absolutely continuous with respect to the
law of {Xl

t }t ¥ [0, T], where {Xl
t }t ¥ [0, T] is defined by

Xl
t =X0 − F

t

0
F

1

0
F

.

0
[h − lc(h)] Xl

s − 1{u [ Xl
s − a(Xl

s − )} m(ds, dh, du).

We denote by Gl
T the corresponding density (which can be explicitly com-

puted). Note that for l=0, we have X0
t =Xt for all t. See Definition 4.1

and Proposition 4.2 of ref. 9 for similar arguments.

Step 3. Using the fact that x W xa(x) decreases, using the expo-
nential expressions of Xl (as (4.11) and (4.12)), one easily understands that
a.s., for each t ¥ [0, T], the map l W Xl

t is increasing on [0, 1]. More pre-
cisely, one may prove (following Proposition 5.3 in ref. 9), that for all
0 [ l [ l+n [ 1,

Xl+n
t − Xl

t \ nZtX
l
t \ 0 (4.13)

where

Zt=F
t

0
F

1

0
F

.

0
c(h) Xs − 1{u [ X0a(X0)}n(ds, dh, du).

Since xa(x) > 0 for all x > 0, since c(h) > 0 for all h ¥ ]0, 1[, and since
>1

0 (1 − h) b(h) dh=., we deduce that

{Zt > 0}={X0 > 0}. (4.14)
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Step 4. We finally fix t ¥ ]0, T], and consider a Lebesgue-null set
A … ]0, .[. We have to prove that P(Xt ¥ A)=0. First of all, from Step 2,
we have

P(Xt ¥ A)=E(1A(Xl
t ) Gl

T)=F
1

0
E(1A(Xl

t ) Gl
T) dl

=E 1F
1

0
1A(Xl

t ) Gl
T dl2 .

It thus suffices to prove that a.s., >1
0 1A(Xl

t ) Gl
T dl=0. Since furthermore

E[Gl
T]=1 for all l, we see that a.s., >1

0 Gl
T dl < ., and it is enough to

check that a.s.,

F
1

0
1A(Xl

t ) dl=0.

We divide W in three parts.

(i) First, if Xt(w)=X0
t (w) > 0, then it is clear that X0(w) > 0, and

thus (4.14) yields that Zt(w) > 0. Hence we know from (4.13) that

inf
{0 [ l < l+n [ 1}

Xl+n
t (w) − Xl

t (w)
n

> 0

and one may conclude by applying Lemma 4.1 to f(l)=Xl
t (w).

(ii) If Xl
t (w)=0 for all l, then the result is obvious since 0 does not

belong to A.
(iii) Finally fix w such that 0=Xt(w) < X1

t (w). Denote by l0(w)=
inf{l > 0; Xl

t (w) > 0}. Then it is clear that for all e > 0, Xl0(w)+e
t (w) > 0.

Using (4.13) shows that

inf
{l0(w)+e [ l < l+n [ 1}

Xl+n
t (w) − Xl

t (w)
n

> 0

and thus one may apply Lemma 4.1 to obtain >1
l0(w)+e 1A(Xl

t (w)) dl=0.
On the other hand, it is obvious (since 0 ¨ A) that >l0(w)

0 1A(Xl
t (w)) dl=0.

Making e tend to 0 allows to conclude.

Step 5. We finally extend this result to the case with coagulation.
Denote by JK

t =;s [ t 1{DXs > 0} the number of jumps of X due to the
coagulation before time t:

JK
t =F

t

0
F

1

0
F

.

0
13u [

K(Xs − , X̃s − (a))

X̃s − (a))
4 N(ds, da, du).
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Since K(x, y) [ Cxy, one easily checks that E[JK
t ] < . for all t \ 0.

Denote by 0 < TK
1 < TK

2 < · · · the corresponding instants. Then 1i \ 1 {TK
i }

… 1i \ 1 {Si}, where we define the instants Si recursively by S0=0, and

Sn+1=inf 3 s > Sn; F
s

Sn

F
1

0
F

.

0
1{u [ CXSn

}N(ds, da, du) \ 14 .

This comes from the fact that K(x, y)/y [ Cx, and that the process Xt

does not increase between two instants of coagulation. We thus may split
our process Xt in the following way:

Xt= C
i \ 0

X i
t − Si

1[Si, Si+1[(t)

where for each i, conditionally to GSi
, X i

t is a pure fragmentation process,
starting at XSi

and independent of Si+1. We now may conclude: consider a
Lebesgue-null subset A of ]0, .[. Then, for all t > 0,

P[Xt ¥ A]= C
i \ 0

P(X i
t − Si

¥ A, t ¥ ]Si, Si+1[)

[ C
i \ 0

P(X i
t − Si

¥ A, t > Si)=0

by the four first steps. This concludes the proof. L
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